

Thursday 23 May 2013 – Morning

GCSE GATEWAY SCIENCE CHEMISTRY B

B741/02 Chemistry modules C1, C2, C3 (Higher Tier)

Candidates answer on the Question Paper. A calculator may be used for this paper.

OCR supplied materials:

None

Other materials required:

- Pencil
- Ruler (cm/mm)

Duration: 1 hour 15 minutes

Candidate forename				Candidate surname			
Centre numb	er			Candidate nu	umber		

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the boxes above. Please write clearly and in capital letters.
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Answer all the questions.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Write your answer to each question in the space provided. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Do not write in the bar codes.

INFORMATION FOR CANDIDATES

- Your quality of written communication is assessed in questions marked with a pencil ().
- The Periodic Table can be found on the back page.
- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is **75**.
- This document consists of 24 pages. Any blank pages are indicated.

Answer all the questions.

SECTION A - Module C1

1	This qu	estion	is	about	the	gases	in	the	air.
---	---------	--------	----	-------	-----	-------	----	-----	------

(a) Clean air is a mixture of gas

Complete the table to show the percentage of gases in clean air.

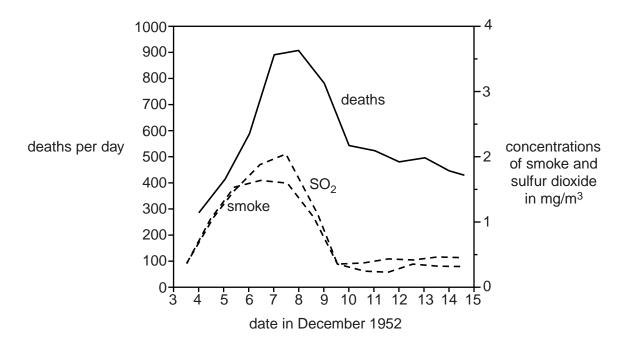
Gas	Percentage
	78%
	21%
carbon dioxide	

[2]

(b)	(i)	Carbon monoxide and oxides of nitrogen are pollutants found in air.
		Explain why it is important that atmospheric pollution is controlled.
		[2]
	(ii)	Catalytic converters are fitted to cars to help reduce air pollution from carbon monoxide, CO, and nitrogen monoxide, NO.
		What happens in a catalytic converter?
		Include a balanced symbol equation in your answer.

.....[3]

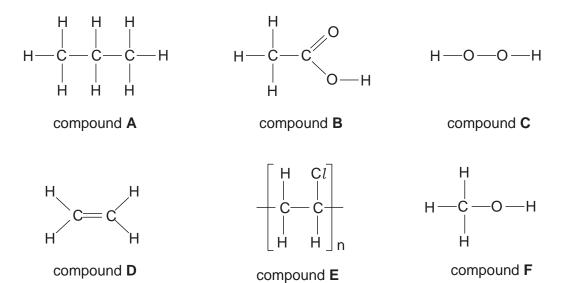
(c)


Air quality in the UK has improved over the last 60 years.

In December 1952, air pollution was so bad in London that sometimes people could not see their own feet.

Look at the graph.

It shows the number of deaths each day in London, between 3 December and 15 December 1952.


It also shows the concentrations of smoke and sulfur dioxide.

	[2
and sulfur dioxide.	
Describe the relationship between the number	ei di deallis and the concentrations di sindke

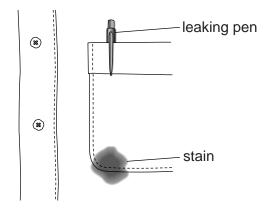
[Total: 9]

2 Look at the displayed formulas of some compounds.

(a) Compound F is not a hydrocarbon.

	Explain how you can tell from the displayed formula.	
		 . [1]
(b)	Which compound is an unsaturated hydrocarbon?	
	Choose from A, B, C, D, E or F.	
		[1]
(c)	Which compound is a polymer ?	
	Choose from A, B, C, D, E or F.	
		[1]

(d) Compound D makes an addition polymer.


Draw the displayed formula of this addition polymer.

[1]

[Total: 4]

3 Chemicals called esters can be used as solvents.

Sarah investigates how good four different solvents are at removing a stain from cotton.

Look at her results.

Onlyses	Percentage of	Effect on	
Solvent	At 40°C	At 60°C	cotton
Α	0%	35%	colour fades
В	10%	60%	none
С	85%	100%	cotton shrinks
D	75%	95%	none

(a)	Which solvent is the most suitable for removing stains from cotton?
	Explain your choice.
	[2]
(b)	Sarah thinks her results do not provide sufficient evidence to make a firm conclusion.
	Explain what further tests would help to make her conclusion more secure.
	[2]

© OCR 2013 Turn over

[Total: 4]

4 Fractional distillation separates crude oil into useful fractions.

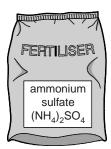
The fractions have different boiling temperatures.

Look at the table.

It shows some information about fractions obtained from crude oil.

Fraction	Boiling temperature in °C
bitumen	above 350
LPG	less than 40
fuel oil	300 – 350
heating oil	250 – 300
petrol	40 – 200
paraffin	200 – 250

(a) Use ideas about intermolecular forces to explain how fractional distillation separates crude oil into fractions and list the fractions in the position, from top to bottom, that they 'exit' the fractionating column.

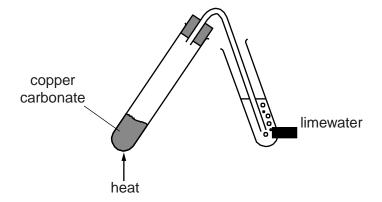

	Tr.	61
	The quality of written communication will be assessed in your answer to this question	
///	The quality of written communication will be assessed in your answer to this question	n

	[Total: 8]
	[2]
	Only carbon monoxide, CO, and water are made.
	Write a balanced symbol equation for the incomplete combustion of propane in oxygen, ${\rm O_2}$.
(b)	The LPG fraction contains propane gas, C ₃ H ₈ .

Question 5 begins on page 8

SECTION B – Module C2

- 5 This question is about fertilisers.
 - (a) Ammonium sulfate is used as a fertiliser.



The formula for ammonium sulfate is (NH₄)₂SO₄

	1110	10111ala 101 all 111011al 11 Salate 15 (1111 ₄ / ₂ 55 ₄ .	
	(i)	Write down the number of different elements in ammonium sulfate.	
		answer[1]
	(ii)	Write down the number of atoms in this formula.	
		answer[1]
(b)	Am	y and Chris decide to make some solid ammonium sulfate by neutralisation.	
	The	y use an acid and an alkali.	
	Nar	ne the acid and alkali they use and describe the experimental method they use.	
	Ø	The quality of written communication will be assessed in your answer to this questio	n.
		r	61

6 (a) (i) Sam investigates the action of heat on copper carbonate.

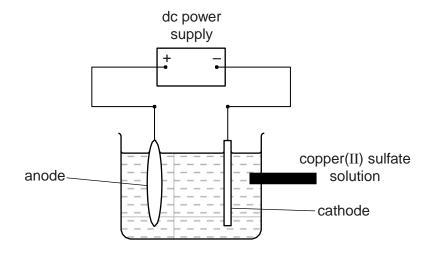
Look at the diagram. It shows the apparatus he uses.

Look at the word equation for the reaction

copper carbonate	\rightarrow	copper oxide	+	carbon dioxide	
This is a thermal decon	nposit	ion reaction.			
Explain why.					
					[1]

(ii) Sam makes some copper.

Sam heats copper oxide, CuO, with carbon, C.


Copper, Cu, and carbon dioxide, ${\rm CO_2}$, are made.

Write a **balanced symbol** equation for this reaction.

______[

(b) The copper Sam makes is impure.

Look at the diagram. It shows the apparatus he uses to purify copper.

Look at the equations below for the electrode reactions.

The anode: $Cu - 2e^- \rightarrow Cu^{2+}$

The cathode: $Cu^{2+} + 2e^{-} \rightarrow Cu$

(i) Which reaction is oxidation and which is reduction?

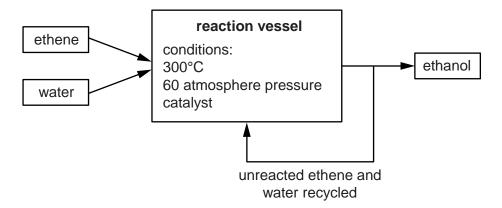

Explain why.
[2
i) Use the electrode reactions to explain why the anode loses mass and the cathode gain mass.
[2
Explain one advantage and one problem of recycling copper.

(c)

(d) Look at the table. It shows some properties of three metals.

	Density in g/cm ³	Relative electrical conductivity (0 = low, 100 = high)	Relative strength (0 = weak, 1000 = very strong)	Corrosion in moist air	Cost per tonne in £
Aluminium	2.7	40	300	does not corrode	770
Copper	8.9	64	400	corrodes slowly	5900
Iron	7.9	11	600	corrodes	200

Look at the picture. It shows overhead power cables used by electric trains.



Which metal would you choose to make the overhead power cables?
Justify your answer.
Use the data in the table.
[2]

[Total: 11]

7 Ethanol can be made from ethene and water.

The flowchart shows this process.

The symbol equation for the reaction is:

$$C_2H_4 + H_2O \rightleftharpoons C_2H_6O$$

The percentage of ethanol changes as the temperature and pressure change.

Look at the table.

It shows the percentage of ethanol at different temperatures and pressures.

Pressure	Percentage of ethanol (%)					
in atmospheres	At 100°C	At 200°C	At 300°C	At 400°C		
20	15	10	5	2		
40	20	15	10	5		
60	40	30	20	10		
80	60	50	40	20		

- (a) Which of the following conditions gives the **highest** percentage of ethanol?
 - A high pressure with high temperature
 - **B** high pressure with low temperature
 - **C** low pressure with high temperature
 - **D** low pressure with low temperature

Choose from A, B, C or D.

answer

[1]

(b) The conditions used for making **ethanol** are:

• 300°C
60 atmospheres pressure.
Suggest why these conditions are used even though the percentage of ethanol is only 20%.
[2]
[Total: 3]

Question 8 begins on page 14

- 8 This question is about the structure of the Earth.
 - (a) Look at the table of densities.

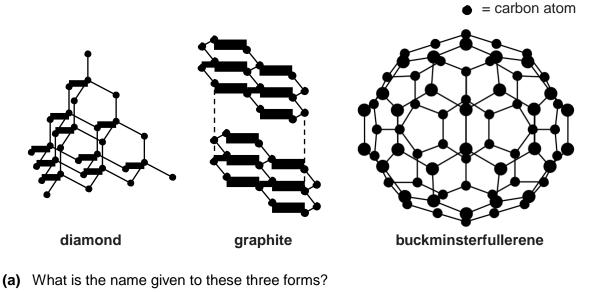
Layer of Earth	Density in g/cm ³
crust	2.2 – 3.9
outer mantle	3.4 – 4.4
inner mantle	4.4 – 5.6
outer core	9.9 – 12.2
inner core	12.8 – 13.1

The lithosphere includes the crust and outer part of the mantle.

The lithosphere is made of tectonic plates.

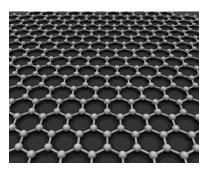
	Some scientists claim that these tectonic plates 'float' on the inner mantle.
	How does the data in the table help to support this claim?
	[1]
(b)	In 1914, Wegener proposed a theory to explain the structure of the Earth.
	This was not accepted by many scientists at the time.
	His original theory has now been developed into the theory of plate tectonics.
	This developed theory is more widely accepted.
	Explain why developed theories are often more widely accepted.
	[2]

[Total: 3]


15 BLANK PAGE

Question 9 begins on page 16

PLEASE DO NOT WRITE ON THIS PAGE


SECTION C - Module C3

9 Carbon can exist in different solid forms.

.....[1]

(b) Look at the diagram.

It shows the structure of a new solid form of carbon called graphene.

Graphene contains **one layer** of carbon atoms.

Graphene is made from graphite.

Graphene is harder than graphite.

Explain, using ideas about structure and bonding, why graphene is hard and graphite is slippery.

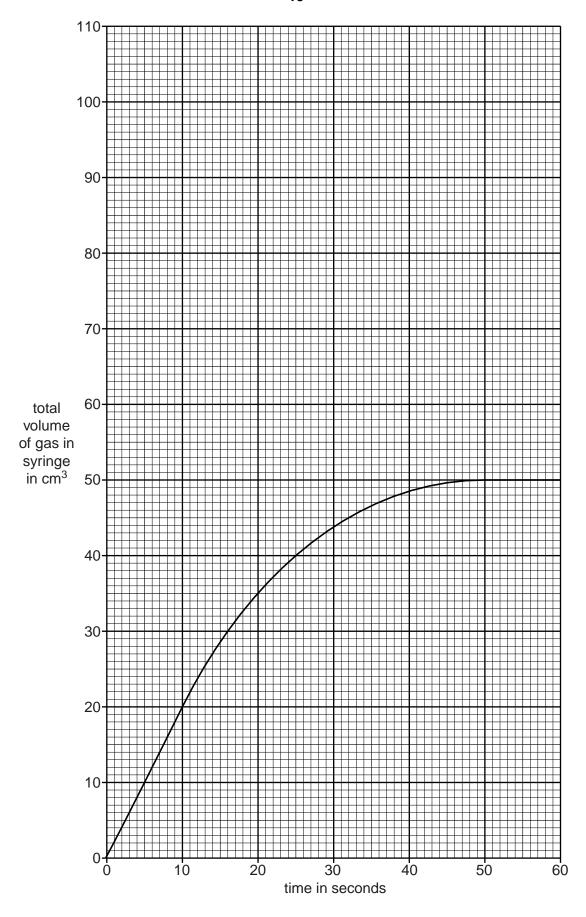
.....[2]

(c) Diamond and graphite have different properties and different uses.

Look at the table.

It shows some information about the properties of diamond and graphite.

Property	Diamond	Graphite
State at room temperature	solid	solid
Appearance at room temperature	transparent	black
Melting point	very high	very high
Hardness	very hard	soft
Electrical conductivity	does not conduct	good conductor


Diamond is used to make cutting tools.

The picture shows a drill bit with diamonds on its end.	
This drill is used to cut through rock.	
Explain why diamond is used to make cutting tools.	
Use the table to help you.	
	[2

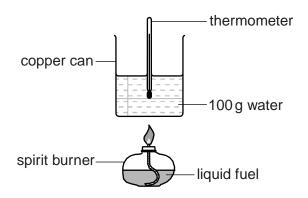
[Total: 5]

10	Hila	lary investigates the reaction between magnesium, Mg, and hydrochloric acid, HCl.						
	Ма	gnesium chloride, $\mathrm{MgC}\mathit{l}_{2}$, and hydrogen, H_{2} , are made.						
	(a)	Cor	nstruct the balanced symbol equation for this reaction.					
				[2]				
	(b)	Loo	ok at the diagram.					
		lt sł	hows the apparatus she uses.					
			20 40 60 80 100 cm ³ gas syringe hydrochloric acid magnesium lumps					
		Hila	ary measures the total volume of gas in the syringe every 10 seconds.					
		Loo	ok at the graph opposite. It shows her results.					
		(i)	How long does it take for the reaction to stop?					
			answer seconds	[1]				
		(ii)	Calculate the rate of reaction during the first 10 seconds of this experiment.					
			answer cm ³ /s	[1]				
		(iii)	Hilary repeats the experiment.					
			She uses the same mass of magnesium and the same volume and concentration of	of acid.				
			This time she uses magnesium powder .					
			On the grid sketch the curve she gets.	[2]				
			[То	otal: 6]				

11	Mag	nesium sulfate and magnesium nitrate are both used as fertilisers.											
	(a)	Magnesium sulfate can be made in industry by a continuous process.											
		Explain why batch processes are used to make some pharmaceutical drugs but continuous processes are used to make fertilisers.											
		[2]											
	(b)	Magnesium nitrate is made by a neutralisation reaction.											
		Look at the equation for the reaction.											
		$2HNO_3 + MgO \rightarrow Mg(NO_3)_2 + H_2O$											
		Water is a waste product.											
		Show that the atom economy for the reaction is 89% and explain why it is important that the atom economy for a reaction is as high as possible.											
		The relative atomic masses (A_r) for H = 1, N = 14, O = 16 and Mg = 24.											
		The quality of written communication will be assessed in your answer to this question.											
		[6]											
		[Total: 8]											

- 12 This question is about energy changes during chemical reactions.
 - (a) Cold packs are used to treat sports injuries.

The cold pack **reduces** the temperature of the injured part of the body.


An endothermic reaction happens when the chemicals in the cold pack react.

Energy is absorbed when bonds break.										
Explain, in terms of bonds between atoms, why this reaction is endothermic .										
[2]										

(b) Aimee and Luke investigate four liquid fuels.

They burn an amount of each liquid fuel.

Look at the diagram. It shows the apparatus they use.

Look at the table. It shows their results.

Liquid fuel	Mass of fuel burnt in g	Temperature at start in °C	Temperature at end in °C			
ethanol	2.2	20	40			
methylated spirits	2.4	21	39			
paraffin	1.9	22	45			
propanol	2.1	22	44			

(i) Calculate the energy transferred by **ethanol**.

	energy transferred = mass × specific heat capacity × temperature change	
	The specific heat capacity of water is 4.2 J/g°C.	
	answer J	[2]
(ii)	Aimee thinks paraffin gives out the most energy per gram.	
	Use the results to show that she is correct.	
		. [2]

[Total: 6]

PLEASE DO NOT WRITE ON THIS PAGE

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

 $For queries \ or \ further \ information \ please \ contact \ the \ Copyright \ Team, \ First \ Floor, 9 \ Hills \ Road, \ Cambridge \ CB2 \ 1GE.$

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© OCR 2013

The Periodic Table of the Elements

1	2							-				3	4	5	6	7	0	
		_		Key		1 H hydrogen 1											4 He helium 2	
7 Li lithium 3	9 Be beryllium 4		aton	ve atomic nic symbo (proton) ı	l name							11 B boron 5	12 C carbon 6	14 N nitrogen 7	16 O oxygen 8	19 F fluorine 9	20 Ne neon 10	
23 Na sodium 11	24 Mg _{magnesium} 12											27 Al aluminium 13	28 Si silicon 14	31 P phosphorus 15	32 S sulfur 16	35.5 Cl chlorine 17	40 Ar argon 18	
39 K potassium 19	40 Ca calcium 20	45 Sc scandium 21	48 Ti titanium 22	51 V vanadium 23	52 Cr chromium 24	55 Mn manganese 25	56 Fe iron 26	59 Co cobalt 27	59 Ni nickel 28	63.5 Cu copper 29	65 Zn zinc 30	70 Ga gallium 31	73 Ge germanium 32	75 As arsenic 33	79 Se selenium 34	80 Br bromine 35	84 Kr krypton 36	
85 Rb rubidium 37	88 Sr strontium 38	89 Y yttrium 39	91 Zr zirconium 40	93 Nb niobium 41	96 Mo molybdenum 42	[98] Tc technetium 43	101 Ru ruthenium 44	103 Rh rhodium 45	106 Pd palladium 46	108 Ag silver 47	112 Cd cadmium 48	115 In Indium 49	119 Sn tin 50	122 Sb antimony 51	128 Te tellurium 52	127 I iodine 53	131 Xe xenon 54	
133 Cs caesium 55	137 Ba barium 56	139 La* lanthanum 57	178 Hf hafnium 72	181 Ta tantalum 73	184 W tungsten 74	186 Re rhenium 75	190 Os osmium 76	192 Ir iridium 77	195 Pt Platinum 78	197 Au gold 79	201 Hg mercury 80	204 T <i>l</i> thallium 81	207 Pb lead 82	209 Bi bismuth 83	[209] Po polonium 84	[210] At astatine 85	[222] Rn radon 86	
[223] Fr francium 87	[226] Ra radium 88	[227] Ac* actinium 89	[261] Rf rutherfordium 104	[262] Db dubnium 105	[266] Sg seaborgium 106	[264] Bh bohrium 107	[277] Hs hassium 108	[268] Mt meitnerium 109	[271] Ds darmstadtium 110	[272] Rg roentgenium 111	Eleme	Elements with atomic numbers 112-116 have been reported but not fully authenticated						

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.

^{*} The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted.